Sample Documents

AP Calculus
(APC)

EducAide Software

Copyright © 1999 by EAS EducAide Software Inc.
All rights reserved. Unauthorized reproduction of this document
or the related software is prohibited by law.
Solve each of the following problems then indicate which is the best choice by blackening the corresponding circle.

1. Given the parametric equations \(x = 2\cos^3 t \) and \(y = 2\sin^3 t \), find \(\frac{d^2 y}{dx^2} \).
 (A) \(\frac{2}{3}\cos^4 t \sin t \)
 (B) \(\frac{2}{3}\cos^3 t \sin t \)
 (C) \(\frac{2}{3}\cos t \sin^4 t \)
 (D) \(\frac{5}{2}\cos^4 t \sin t \)
 (E) \(\frac{1}{3}\cos^4 t \sin t \)

This figure shows the graph of \(f \). Use this figure to answer the following question(s).

2. \(\lim_{x \to 3^-} f \) is
 (A) 1
 (B) 3
 (C) 2
 (D) 0
 (E) no limit

3. If \(f(x) = \sqrt{4 + e^{2x}} \), then \(f'(x) = \)
 (A) \(\frac{e^{2x}}{\sqrt{4 + e^{2x}}} \)
 (B) \(e^x \)
 (C) \(\frac{1}{\sqrt{4 + e^{2x}}} \)
 (D) \(\frac{1}{2\sqrt{2e^{2x}}} \)
 (E) \(\frac{x e^{2x-1}}{\sqrt{4 + e^{2x}}} \)

4. Integrate: \(\int \frac{4 + 5x^{3/2}}{\sqrt{x}} \, dx \)
 (A) \(2x^{3} + \frac{5}{2}x^2 + C \)
 (B) \(-2x^{-3/2} + 5 + C \)
 (C) \(8x^{3} + \frac{5}{2}x^2 + C \)
 (D) \(2x^{-3/2} + \frac{5}{2}x^2 + C \)
 (E) \(4x^{-1/2} + 5x + C \)
5. The figure shows the graph of \(f' \), the derivative of the function \(f \). The domain of the function \(f \) is \(-10 \leq x \leq 10\). For what value(s) is the graph of \(f \) concave downwards?

(A) \(-3 < x < 3\)
(B) \(0 < x < 3\)
(C) \(-1 < x < 1\)
(D) \(\emptyset\)
(E) \(-3 < x < 0\)

6. Find the area of the region bounded by the graphs of \(f(x) = 6x - x^2 \) and \(g(x) = x^2 - 2x \).

(A) 128
(B) \(\frac{64}{3}\)
(C) 36
(D) \(\frac{20}{3}\)
(E) 32

7. The graph of the derivative of \(f(x) \) is shown. From the following graphs choose \(f \).

8. A particle’s motion is described by \(x(t) = 4t^3 - 5t^2 \), \(t \geq 0 \), where \(t \) is in seconds and distance in meters. Find the average velocity in the third second.

(A) 48 m/s
(B) 51 m/s
(C) 19 m/s
(D) 78 m/s
(E) 38 m/s
Answer List

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>2. C</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>5. C</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>8. D</td>
</tr>
</tbody>
</table>

Catalog List

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>APC DH 20</td>
<td>2. APC CA 14</td>
</tr>
<tr>
<td>4</td>
<td>APC FA 22</td>
<td>5. APC EH 20</td>
</tr>
<tr>
<td>7</td>
<td>APC EH 31</td>
<td>8. APC GA 4</td>
</tr>
</tbody>
</table>
Calculus
Problem Set 12

Name ___________________ Date ___________________

1. \(\lim_{x \to -1^+} \frac{x^2}{(1-x)(1+x)} \) is
 a) \(\infty \) b) 1 c) \(-\infty\) d) 1+
 e) none of these

2. \(\lim_{x \to -2^-} \frac{x}{(x+2)(x-3)} \) is
 a) 3 b) \(\infty \) c) \(-\infty\) d) 0
 e) none of these

3. Assume \(f(7) = 0, \ f'(7) = 14, \ g(7) = 1, \) and \(g'(7) = \frac{1}{7} \). Find \(h'(7) \) given \(h(x) = \frac{f(x)}{g(x)} \).
 a) \(\frac{49}{2} \) b) 14 c) \(-14\) d) \(-2\)
 e) none of these

4. Assume \(f(3) = 0, \ f'(3) = 6, \ g(3) = 1, \) and \(g'(3) = \frac{1}{3} \). Find \(h'(3) \) given \(h(x) = \frac{f(x)}{g(x)} \).
 a) \(\frac{9}{2} \) b) \(-2\) c) 6 d) 18
 e) none of these

5. Given a function defined by \(f(x) = 3x^5 - 5x^3 + 12 \), for what value(s) of \(x \) is there a point of relative minimum?
 a) \(-1\) only b) 0 only
 c) 0 and \(-1\) d) 0 and 1
 e) none of these

6. Given a function defined by \(f(x) = 3x^5 - 5x^3 - 8 \), for what value(s) of \(x \) is there a point of relative maximum?
 a) 1 and \(-1\) b) 1 only
 c) 0 and \(-1\) d) 0 and 1
 e) none of these

7. Evaluate: \(\int_0^2 x(x^4 + 4x^2 + 4) \, dx \)
 a) 104 b) \(\frac{3}{104} \) c) \(\frac{104}{3} \) d) \(\frac{104}{9} \)
 e) none of these

8. Evaluate: \(\int_0^1 x^2(x^3 + 8)^2 \, dx \)
 a) \(\frac{103}{9} \) b) \(\frac{31}{9} \) c) \(\frac{217}{3} \) d) \(\frac{217}{9} \)
 e) none of these

9. Which of the following definite integrals represents the area of the shaded region?
 a) \(\int_0^4 (4-x^2) \, dx \)
 b) \(\int_0^2 (4-x^2) \, dx \)
 c) \(\int_2^4 (4-x^2) \, dx \)
 d) \(\int_0^2 (4-x^2) \, dx \)
 e) none of these

10. Which of the following definite integrals represents the area of the shaded region?
 a) \(\int_1^2 x^2 \, dx \)
 b) \(\int_0^2 x^2 \, dx \)
 c) \(\int_0^4 x^2 \, dx \)
 d) \(\int_0^4 x^2 \, dx \)
 e) none of these
11. Determine whether the integral \(\int_{1}^{\infty} \frac{1}{x^{3/4}} \, dx \) converges or diverges and evaluate the integral if it converges.

a) converges, \(\frac{1}{3} \)

b) converges, 1

c) converges, \(\frac{4}{3} \)

d) diverges

e) none of these

12. Determine whether the integral \(\int_{-\infty}^{0} \frac{1}{(x-1)^{3}} \, dx \) converges or diverges and evaluate the integral if it converges.

a) converges, \(-\frac{1}{2} \)

b) converges, 1

c) converges, \(\frac{3}{2} \)

d) converges, 2

e) none of these

13. Which of the following is the graph of \(f(x) = \ln(\sqrt{x}) \)?

a)

b)

c)

d)

e) none of these

14. A mold culture doubles its mass every three days. Find the growth model for a plate seeded with 1.2 grams of mold.

a) \(y = 1.2e^{0.10034t} \)

b) \(y = 1.2e^{0.23856t} \)

c) \(y = 1.2e^{0.54931t} \)

d) \(y = 1.2e^{0.38761t} \)

e) none of these

15. A mold culture doubles its mass every seven days. Find the growth model for a plate seeded with 0.9 grams of mold.

a) \(y = 0.9e^{0.12183t} \)

b) \(y = 0.9e^{0.38541t} \)

c) \(y = 0.9e^{0.81818t} \)

d) \(y = 0.9e^{0.45128t} \)

e) none of these

16. Evaluate: \(\sum_{i=1}^{10} (i^2 - 2i + 3) \)

a) 83

b) 865

c) 81

d) 305

e) none of these

17. Evaluate: \(\sum_{i=1}^{10} (2 - 3i + 2i^2) \).

a) 625

b) 735

c) 1395

d) 717

e) none of these

18. Find the point on the curve \(f(x) = x^2 + 1 \) that is nearest to the the point \(B(3, 1) \).

a) (0, 1)

b) (2, 5)

c) \(\left(\frac{1}{3}, \frac{2}{3} \right) \)

d) (5, 2)

e) none of these

19. Find a point on the curve \(x^2 - 9y = 0 \) that is closest to the point \(P(5, -2) \).

a) (2, 5)

b) (-1, 4)

c) (-3, 1)

d) (2, 1)

e) none of these

20. For any time \(t \geq 0 \), \(x(t) = e^{2t} \) and \(y(t) = e^{-4t} \).

Find \(\frac{dy}{dx} \) at \(t = \frac{1}{6} \).

a) \(-\frac{2}{e} \)

b) 4e

c) 2

d) e

e) none of these

21. For any time \(t \geq 0 \), \(x(t) = t^3 \) and \(y(t) = 3\ln t \).

Find \(\frac{dy}{dx} \).

a) \(\frac{1}{t^2} \)

b) \(t^4 \)

c) \(t^3 \)

d) \(t^2 \)

e) none of these
Answer List

1. a
2. c
3. b
4. c
5. e
6. e
7. c
8. d
9. b
10. e
11. d
12. a
13. e
14. e
15. e
16. d
17. a
18. e
19. e
20. a
21. e

Catalog List

1. APC CD 17
2. APC CD 13
3. APC DC 11
4. APC DC 13
5. APC EF 19
6. APC EF 21
7. APC FL 9
8. APC FL 13
9. APC FO 2
10. APC FO 3
11. APC FQ 3
12. APC FQ 9
13. APC BG 35
14. APC GB 18
15. APC GB 21
16. APC HA 5
17. APC HA 8
18. APC EK 3
19. APC EK 5
20. APC DH 3
21. APC DH 4